

# **Composite Primer**

# **Next Generation Primer Technology**

Joel Sandstrom Chemist, ATK Sporting Group May 2012



# **ATK Sporting Group**











# A growing portfolio of market-leading brands

- Headquartered in Anoka, Minnesota
- Sporting and hunting ammunition
- Law enforcement and security forces ammunition
- Propellant for reloaders and ammunition
- Shooting sport accessories
- Tactical systems and accessories for:
  - Military customers
  - Law enforcement and security markets
  - Consumer markets

# **Background**



### **Primer Fundamental Requirements**

- Safety manufacturing and consumer
- Sensitivity impact and friction, tunable
- Ignition transfer of calories in the form of sustained heat
- Reliability 6+ sigma
- Stability moisture, temperature, aging
- Brisance minimum overpressure necessary
- Toxicity environmental (RCRA), human (OSHA)
- Cost widget



### **Design Approach**



### **ATK Composite Pyrotechnic System**

Theory: Sensitivity to detonation for many explosives increases in the presence of a reducing agent

- The Composite pyrotechnic system creates maximum surface area contact between explosive and reducing agent
- 2. The system generates significant and sustained heat to allow complete utilization of relatively inactive oxidizers

# **Composite Primer Design Space Example**





# **Composite Primer Assembly Example**





### **Standard Primer Cup**

**Pyrotechnic** 







**Standard Boxer Anvil** 

### **Conventional Water Based Primer Manufacturing**



### ATK COMPOSITE PRIMER

# **Ignition Progression**



### **5.56mm Primed Brass**



Composite No. 41

U.S. Mil

No. 41



Time 850 - 1650 microseconds

# **Comparison at 1250 Microseconds**



#### **5.56mm Primed Brass**

Mil-Spec No. 41



Composite No. 41



DDNP No. 41



# **5.56mm - Flame Front Velocity**





Data Calculated using High Speed Video from Case Mouth



#### **Condensed Phase Exhaust Products**

Fraunhofer Thermodynamic ICT Code

#### **Reaction Products at 298°K**



# **Ballistic Examples**



#### **2009 Data**

**Example – 1** 5.56mm, M193, 10 rounds

<u>Chamber Pressure / Std Dev</u> <u>Velocity / Std Dev</u>

Control 52,944 / 1155 3134 / 14 Composite 52,201 / 1072 3141 / 17

Example – 2 7.62mm, M80, 10 rounds

Chamber Pressure / Std Dev Velocity / Std Dev

Control 50,151 / 1330 2728 / 13 Composite 54,149 / 749 2792 / 8

**Example – 3 9mm NATO, M882, 10 rounds** 

Chamber Pressure / Std Dev Velocity / Std Dev 24,699 / 650 1217 / 10

 Control
 24,699 / 650
 1217 / 10

 Composite
 25,491 / 804
 1214 / 3

### Conclusion



Design meets the Product System Requirements

#### Production Status

- Independent 25,000 round production runs passed 5.56mm full Mil-Spec LAT's
- Multiple field tests complete / Standard production runs in field evaluation

Safety: Significantly increased safety margin gained by elimination of

manufacture and handling trinitroresorcinol and lead styphnate

Manufacture: Water processed consistent with lead styphnate primer mixing

• Configuration: Boxer Style cup / anvil consistent with Mil-Spec primers

• Cost: Very Competitive with current manufacturing cost

• Source: Primarily U.S. components; potential for 100% U.S.

Patent: Multiple patents pending

### **Questions**



**Joel Sandstrom** 

**ATK Sporting Group** 

Phone: 763.323.3716

joel.sandstrom@atk.com